Machined Plastics
Plastics
Machined Plastic Parts Materials ABS Plastics & MachiningAcetal & Delrin MachiningAcrylic Plastic Materials & MachiningCOC/COP Plastic Materials & MachiningCPVC Plastic Material & MachiningCTFE/KEL-F Plastic Material & MachiningDelrin AF Plastic Material & Machining ECTFE/Halar Plastic Material & Machining Fluorosint® 500 and 207 Plastic Materials & MachiningHDPE Plastic Material & MachiningLDPE Plastic Material & MachiningNoryl® Plastic Material & MachiningNylatron GS: Self Lubricating Nylon for Precision MachiningNylon 6/6 Material & Machining PBT Plastic Material & MachiningPEEK Plastic Material & Machining PES (Radel A) Plastic Material & MachiningPlastic Machining With PETPhenolics/G10 Plastic Machining Polycarbonate Plastic & MachiningPolypropylene Plastic Material & MachiningPolysulfone Plastic Matetial & MachiningPPS Plastic Material & MachiningPVC Plastic & Machining PVDF Plastic Material & MachiningRadel® Plastic Material & MachiningRexolite® Plastic Material & Machining Tecadur Plastic Material & MachiningTeflon® Plastic Machining (PTFE) | Controlled FluidicsTorlon PlasticMaterial & MachiningUHMW Plastic Materials & MachiningUltem® (PEI) Plastic Material & MachiningVespel® Plastic MachiningPOLYMER OPTIONS
cf-logo.png
Back to the product list

ACRYLIC MANIFOLDS

THE VERSATILE, LIGHTWEIGHT, & SCRATCH-RESISTANT ALTERNATIVE TO GLASS

Acrylic is a clear plastic that is one of the most frequently used materials for bonded device manifolds due to its low cost, easy machinability, and excellent clarity. Many use the name "acrylic" interchangeably with Plexiglas® (and Perspex) as this plastic material can become optically clear with post-machining polishing. This is why acrylic window panes are becoming more popular, especially in mass transit. All these materials are made from polymethyl methacrylate (or PMMA), however, each has some slight differences in terms of quality and performance.

Polished acrylic components comprise most of the optically clear parts in use today. In its uncolored grade, acrylic has clarity equivalent to glass but is lighter in weight, more rigid, and more resistant to scratches and breakage. It is one of the least expensive materials for optically clear parts, and it features a tint-free finish. Acrylic is also a versatile alternative to both glass and heavier plastics, easily withstanding dramatic temperature changes.

Acrylic is the closest plastic substitute for window glass. General purpose-grade cast and polished acrylic parts will block UV wavelengths up to 360 NM (for applications requiring transmittance of 280 NM and above, consider UVT grade). Total internal reflection is possible in acrylic parts, making them useful in light pipe applications.

Acrylic has good weathering ability, high impact resistance, and good chemical resistance and dimensional stability. A skilled machinist can make drilled holes in acrylic straight and clear. Buffing, flame polishing, and optical machining are all effective polishing processes for acrylic. Acrylic polishing allows for many novel edge lighting approaches, and highly polished acrylic lenses are often produced by optical machining.

Acrylic performs well in pneumatic and vacuum applications. Operating pressures as high as 150 psi (depending on channel layout) can be supported.