Machined Plastics
Plastics
Machined Plastic Parts Materials ABS Plastics & MachiningAcetal & Delrin MachiningAcrylic Plastic Materials & MachiningCOC/COP Plastic Materials & MachiningCPVC Plastic Material & MachiningCTFE/KEL-F Plastic Material & MachiningDelrin AF Plastic Material & Machining ECTFE/Halar Plastic Material & Machining Fluorosint® 500 and 207 Plastic Materials & MachiningHDPE Plastic Material & MachiningLDPE Plastic Material & MachiningNoryl® Plastic Material & MachiningNylatron GS: Self Lubricating Nylon for Precision MachiningNylon 6/6 Material & Machining PBT Plastic Material & MachiningPEEK Plastic Material & Machining PES (Radel A) Plastic Material & MachiningPlastic Machining With PETPhenolics/G10 Plastic Machining Polycarbonate Plastic & MachiningPolypropylene Plastic Material & MachiningPolysulfone Plastic Matetial & MachiningPPS Plastic Material & MachiningPVC Plastic & Machining PVDF Plastic Material & MachiningRadel® Plastic Material & MachiningRexolite® Plastic Material & Machining Tecadur Plastic Material & MachiningTeflon® Plastic Machining (PTFE) | Controlled FluidicsTorlon PlasticMaterial & MachiningUHMW Plastic Materials & MachiningUltem® (PEI) Plastic Material & MachiningVespel® Plastic MachiningPOLYMER OPTIONS
cf-logo.png
Back to the product list

POLYCARBONATE MANIFOLDS

POLYCARBONATE MANIFOLDS AT A GLANCE

 

Polycarbonate manifolds are quickly replacing acrylic as a baseline material. Polycarbonate readily bonds and welds, supports higher operating temperatures, and has better chemical resistance than acrylic.

  • 10-20% more costly than acrylic
  • Highly impact resistant
  • High clarity
  • Continuous service temperature to 225°F
  • Better chemical resistance; good for alcohols
  • Available as a USP Class VI material
  • Gray or purple tint typical
  • Scratches easily

Polycarbonate has many possible configurations as a multi-layer laminated manifold with .020 or smaller channels (depending on the application). From a design standpoint, many discourage using square channels within manifolds here. Polycarbonate manifolds should have either D-shaped or full round channels for optimal flow. Channel spacing as close as 1x nearest feature size is possible. What's more, we can place flat bottom ½-28 ports or similar can on the bond line with surface finishes for valve mounting can hold as low as 20 µin.

When bonded, engineers can expect a very clear polycarbonate manifold (with a light gray or purplish tint, if using tinted stock). For frequent assembly and disassembly of pumps or valves, consider heat-staked threaded inserts over direct machined threads or helicoils. This is becuase polycarbonate is stress sensitive to long-term loading in stress risers. The pullout strength and low stress on other adjoining components make inserts a best-practice choice for polycarbonate manifold design.